BACHELOR OF SCIENCE IN CIVIL ENGINEERING

Program Contact: John Greenleaf
(john.greenleaf@quinnipiac.edu) 203-582-5018

The BS in Civil Engineering has a broad-based curriculum that provides exposure to technical issues and design in a number of civil engineering sub-disciplines including: structural, environmental, geotechnical, hydraulic/water resources and construction management. Civil engineering projects are often multidisciplinary in nature and can involve large public works. Specifically, civil engineers design, build and maintain a variety of projects including: roads, buildings, tunnels, retaining walls, dams, bridges, airports, water supplies and sewerage systems.

Through exposure to the University Curriculum, foundational coursework in science and mathematics, major field courses and extracurricular activities, students graduating with a BS in Civil Engineering achieve intellectual proficiencies in critical thinking and reasoning, scientific literacy, quantitative reasoning, information fluency, creative thinking and visual literacy. They also achieve interpersonal proficiencies in written and oral communication, responsible citizenship, diversity awareness and sensitivity, and social intelligence.

BS in Civil Engineering Curriculum

The program requires 124 credits as outlined here:
A minimum grade of C - is required to satisfy the prerequisites of all civil engineering courses having the CER designation.

Within the policies of the School of Computing and Engineering, the Civil Engineering program enforces credit limits during the academic terms. Exceeding 18 credits in the Fall or Spring semesters, 4 credits in the January term, or 10 credits in each Summer term requires the approval of the dean's office.
$\left.\begin{array}{llr}\text { Code } & \text { Title } & \text { Credits } \\ \text { University } \\ \text { Curriculum }\end{array}\right)$

Fine Arts

Personal Inquiry 2:

ENR 110 The World of an Engineer 3
PHY 121 University Physics 4
and 4 credits from the following course options. 4
CHE 111 General Chemistry II
\& 111L and General Chemistry II Lab
or
BIO 102 General Biology II
\& 102L and General Biology Lab II
or
PHY 122 University Physics II
Integrative Capstone:
University Capstone
Intercultural Understanding
3 credits within the breadth component of the 3
university curriculum (everything other than foundations of inquiry) must be from classes marked as "l" (intercultural understanding).
In addition to the University Curriculum
requirements, students majoring in Civil
Engineering must take the following:
Foundational Courses for Civil Engineering

CSC 106	Introduction to Programming for	3
	Engineers	
MA 153	Calculus II: Part A	2
MA 154	Calculus II: Part B	2
MA 251	Calculus III	4
MA 265	Matrix Algebra and Differential	4
	Equations	

Common Engineering Curriculum
ENR 210 Engineering Economics and Project 3
Management
ENR 395 Professional Development Seminar 1
Civil Engineering Courses

MER 210	Fundamentals of Engineering Mechanics and Design	3
MER 220	Mechanics of Materials	4

\& 220L and Mechanics of Materials Lab

MER 310 Fluid Mechanics 3
CER 210 Infrastructure Engineering 3
CER 220 and 3
\& 220L
CER 310 3
CER 325 Concrete Materials 1
CER 330 Fundamentals of Environmental 3
\& 330L Engineering
and Fundamentals of
Environmental Engineering Lab
CER 340 Introduction to Geotechnical 4
\& 340L Engineering and Foundation Design and Introduction to Geotechnical Engineering and Foundation Design
Lab

CER 350	Hydrology/Hydraulic Design and Hydrology/Hydraulic Design Lab	4
CER 420	Design of Concrete Structures	
CER 445	Advanced Geotechnical Engineering and Foundation Design	3
CER 455	Advanced Environmental \& 455L	Engineering and Advanced Environmental
	Engineering Lab	
CER 490	Engineering Professional Experience	3
CER 497	Design of Civil Engineering Systems	
I CER 498	Design of Civil Engineering Systems II	0
Select two Civil Engineering Electives	3	
Technical Elective 1		

1
Includes any CER elective or a 200-level or higher MER, IER, SER, MA, BIO or CHE course with program director approval.

Student Outcomes

Attainment of the following competencies prepares graduates to enter the professional practice of engineering:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives

Within four to seven years following graduation, graduates of the civil engineering program shall become successful professionals recognized for their.

1. Ability to apply new knowledge, tools and technology to find sustainable solutions to the problems of a rapidly changing world.
2. Communication of complex ideas and problems to a professional audience.
3. Professionalism and ability to consider the technical, social and ethical consequences of their work.
4. Leadership, mentorship and contributions to their profession and community.
5. Pursuit of intellectual, personal and professional development.

Admission Requirements: School of Computing and Engineering

The requirements for admission into the undergraduate School of Computing and Engineering programs are the same as those for admission to Quinnipiac University.

Admission to the university is competitive, and applicants are expected to present a strong college prep program in high school. Prospective firstyear students are strongly encouraged to file an application as early in the senior year as possible, and arrange to have first quarter grades sent from their high school counselor as soon as they are available.

For detailed admission requirements, including required documents, please visit the Admissions page of this catalog.

Seamless Transfer Agreement with Gateway Community College (GCC), Housatonic Community College (HCC) and Norwalk Community College (NCC)

Under this Transfer Agreement, GCC, HCC and NCC graduates will be guaranteed admission into a bachelor's degree program with third year (junior) status at Quinnipiac University on the condition that they:

- Graduate with an associate in arts, an associate in science in business, College of Technology engineering science and computer science, nursing or an allied health degree with a minimum cumulative GPA of 3.00 (this may be higher in specific programs).
- Satisfy all other Quinnipiac University transfer admission requirements and requirements for intended major.

Quinnipiac University agrees to accept the general education embedded in these associate degree programs in accordance with Quinnipiac preferred choices for general education as meeting all the requirements of its undergraduate general education except for the Integrative Capstone Experience and where courses are encumbered by the major (e.g., General Chemistry for the Disciplinary Inquiry Natural Science requirement for a Biochemistry major).

Suggested Transfer Curriculum for BS in Civil Engineering

A minimum of 60 credits is required for transfer into the BS in Civil Engineering program. Below is a sample plan of study for the first two years.

Course Title Credits

First Year
Fall Semester
English I
Calculus I 4
Introduction to Engineering 3
Elective 3

Elective	3
Credits	16
Spring Semester	
English II	3
Calculus-Based Physics	4
Calculus II	4
General Chemistry I with Lab	4
Credits	15
Second Year	
Fall Semester	
Calculus-Based Physics II	4
Calculus III - Multivariable	4
Introduction to Biology with Lab	4
Elective	3
Credits	15
Spring Semester	
Differential Equations	3
Engineering Statics	3
History Elective	3
Elective	3
Elective	3
Credits	15
Total Credits	61

